SUMMARY

Performance-focused Machine Learning Scientist with a Ph.D. in Biological Sciences and more than eight years of experience architecting and deploying scalable AI/ML pipelines for genomics, clinical research, and multi-omics datasets. Proficient in cutting-edge neural network designs—including convolutional networks and transformer architectures—deep learning methods, and comprehensive MLOps workflows. A trusted leader and collaborator with biostatisticians, bioinformaticians, and clinicians, driving precision-oncology initiatives from concept through production. Passionately engaged with the latest advances in diffusion and LLM-driven protein-engineering applications.

CORE COMPETENCIES

- AI/ML Frameworks & Algorithms: Python ecosystem (NumPy, Pandas, scikit-learn, TensorFlow/Keras, PyTorch) including Keras Tuner; transfer learning and RAG; transformer architectures; and time-series forecasting.
- **Data Domains & Bioinformatics:** Designed and validated end-to-end bioinformatic pipelines (germline, somatic, RNA-seq, proteomics, metabolomics); feature selection; statistical analysis plan and inference; quality management in compliance with FDA IVD guidelines
- MLOps: Docker microservices and network management, MLflow, CI/CD pipelines; REST API for model sharing; Git/GitHub; model versioning, monitoring, and pruning.
- Cloud & HPC Platforms: AWS Batch, S3, and EC2; HPC job orchestration with SLURM; Nextflow workflow orchestration; and Docker container networking and deployment
- **Programming & Data Engineering:** Advanced skills in Python and R; SQL and PySpark for large-scale ETL and high-dimensional clinical data processing
- Collaboration & Agile Delivery: Agile methodologies with JIRA; cross-functional teamwork with biostatisticians, bioinformaticians, and clinicians; stakeholder expectation management

EXPERIENCE

DATA SCIENTIST III

Sapient Bioanalytics

Oct 2023 - present

- Multi-Omics ML Pipelines: Architected a three-stage analytical workflow for a 50,000-sample metabolomics study (40,000+ features/sample), integrating data cleaning, feature engineering (PySpark), and regression analysis.
- **Modeling**: Pioneered application of transformer architectures to longitudinal metabolomic data for risk-score prediction of preeclampsia, stillbirth, and preterm birth across five global cohorts.
- **Metabolic Risk Scoring**: Developed an XGBoost-driven scoring system with Optuna-optimized hyperparameters; deployed on Databricks to process population-scale datasets.
- Capacity Building: Designed and delivered training workshops in developing countries on best practices for multi-omics analysis and AI methodology, strengthening local bioinformatics capabilities.
- Cross-Functional Collaboration: Coordinated with mass spectrometry, computational chemistry, and clinical scientists to ensure data integrity, reproducibility, and alignment with project milestones.

BIOINFORMATIC SCIENTIST II - III

Ambry Genetics

Dec 2019 - Oct 2023

- Panel Development: Design and validation of high-volume NGS panels (CancerNext, RNA, WES, and somatic panels). Ensured ≥99% sensitivity/specificity for SNVs, indels; CNVs under FDA regulatory guidelines.
- QC & Statistical Thresholding: Established robust statistical cutoffs for allele-frequency and coverage metrics, reducing false positives by 30% during chemistry transitions.

- **Pipeline Performance Monitoring:** Developed real-time dashboards to track and visualize variant-calling pipeline performance.
- **Machine Learning Applications**: Implemented GradientBoostingRegressor models to predict CNV counts and prioritize QC investigations, improving workflow efficiency.

Postdoctoral Researcher

UC Irvine Jan 2014 - Dec 2019

- **CRISPR & Proteomics**: Developed CRISPR tagging/knockout tools and purified tagged PP2A complexes for SILAC-LC-MS; mapped protein-protein interactions under metabolic stress.
- **HTS Bio-Screening:** Developed high-throughput screening platform in mammalian cells for p53-reactivating compounds, resulting in a publication in *Nature Communications*.
- RNA-seq Analytics: Designed Nextflow pipelines for differential expression and splicing analysis, identifying methionine-stress targets for therapeutics.
- **Metabolomics Integration:** Processed and analyzed raw LC-MS metabolomic profiles; performed pathway enrichment to elucidate methionine addiction mechanisms in cancer.
- The Data Incubator: Completed a capstone project to visualize the LA parking sweet spots.

EDUCATION

University of California, Irvine

Sep 2007 - Jan 2014

Ph.D. Biological Sciences

University of California, Berkeley

M.S. Information and Data Science

associated with monocytic/macrophage terminal differentiation

In progress

2008

AWARDS & PUBLICATIONS	
Molecular Metabolism Nutrient control of splice site selection contributes to methionine addiction	
of cancer	2025
The EMBO Journal (Accepted) Sphingosine and anti-neoplastic sphingosine analogs activate PP2A ar	nd
inhibit nuclear import in parallel by engaging PPP2R1A and importins	2025
Cell Chemical Biology Discovery of compounds that reactivate p53 mutants in vitro and in vivo	2022
Journal of Lipid Research Lipid remodeling in response to methionine stress in MDA-MBA-468	
triple-negative breast cancer cells	2021
Journal of Biological Chemistry Microhomology-based CRISPR tagging tools for protein tracking, purification, and depletion	2019
Methods Mol. Biol. Isolation and characterization of methionine-independent clones from methionine-dependent cancer cells	2019
U.S. Patent Chembridge Small Molecules that could enhance p53 activity	2015
Journal of Cell Science SAM limitation induces p38 mitogen-activated protein kinase and triggers cell cycle arrest in G1 2014	
Nature Communications Computational identification of a transiently open L1/S3 pocket for reactiva mutant p53	tion of 2013
Cell Cycle Downregulation of Cdc6 and pre-replication complexes in response to methionine stress in cancer cells	breast 2012
Journal of Biological Chemistry Transforming growth factor β up-regulates cysteine-rich protein 2 in vascular smooth muscle cells via activating transcription factor 2	2008
Genes to Cells Identification of a putative human mitochondrial thymidine monophosphate kinase	